

Recycling gold from gold mine

- 1. Using eco-friendly UW-860 gold stripper to extract gold from mine.
- 2. Without any mercury or cyanide.
- 3.ICP test result: 9.6 g Au/ton

Crushing Process

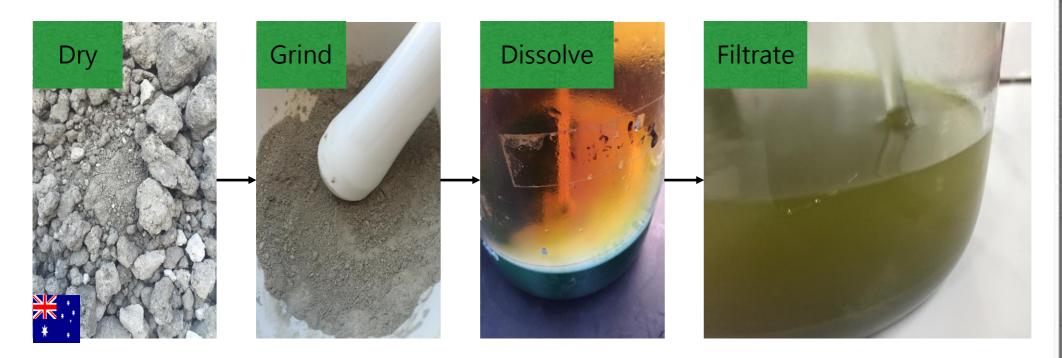
Element Weight Percentage

A	60.4	18.05	12.55	2.75	2.455	1.950	1.040	0.528
В	8.725	66	20.1	0.2675	1.275	1.2	1.0125	0.0014
	以下空白							
	Co (%)	Au (%)	Pt (%)	Sn (%)	Br (%)	Ag (%)	Hg (%)	
A	0.0627	0.0596	0.062	0.0269	0.0222	0.009	ND	
В	0.5915	0.3095	0.241	0.0449	ND	0.0242	0.257	

UW-860 Process

Using HNO3 to remove Cu, Ni, Zn, Fe from gold ore

Then, Using UW-860 stripper to extract the gold from gold ore.

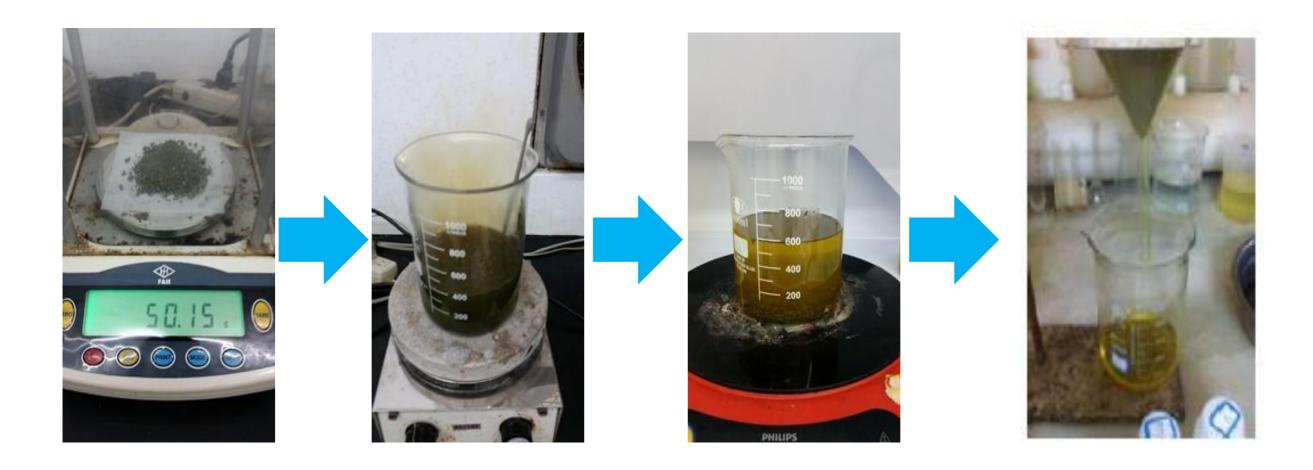


ICP Result

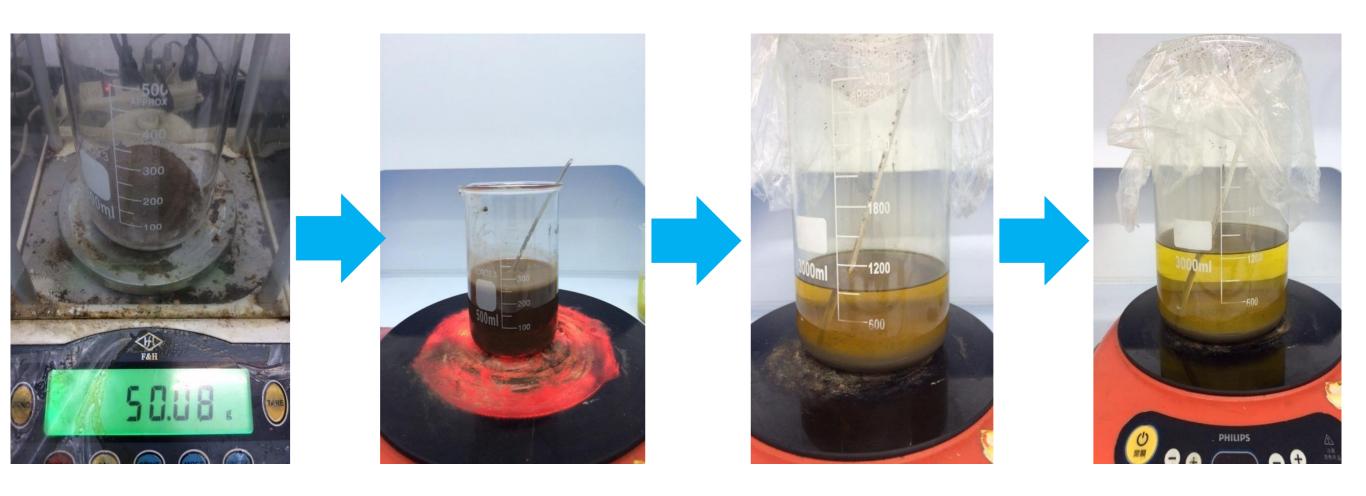
Indonesia: 41.23 g Au/Ton

North Korea: 31.84 g Au/Ton

Refractory Gold



- XRF test result :
 Au (0.0122%) ,
 Si (6.25%) ,
 S (0.538%)
- 2. ICP test result :230 g Au/Ton


XRF test

No.	Component	Result	Unit
1	Fe	83,5	mass%
2	Si	6.25	mass%
3	Ca	5.81	mass%
4	K	1,55	mass%
5	Al	1.40	mass%
6	S	0.538	mass%
7	As	0.333	mass%
K	Ba	0.194	mass%
9	Pb	0.0902	mass%
10	Th	0.0887	mass%
11	Ir	0.0531	mass%
12	Ta	0.0474	mass%
13	Sr	0.0352	mass%
14	Mn	0.0270	mass%
15	Rb	0.0236	mass%
16	Sn	0.0233	mass%
17	Ag	0.0198	mass%
18	Au	0.0122	mass%
19	Sb	(0.0055)	mass%
20	Zn	ND	mass%
21	Ni	ND	mass%
22	Y	ND	mass%
23	Hf	ND	mass%
24	Cu	ND	mass%
25	Ga	ND	mass%
26	U	ND	mass%
27	Br	ND	mass%
28	Co	ND	mass%
29	Ti	ND	mass%
30	v	ND	mass%
31	Cr	ND	mass%
32	Mg.	ND	mass%
33	P	ND	mass%
34	CI	ND	mass%
35	Ge	ND	mass%

ICP analysis=> 23 g Au/Ton

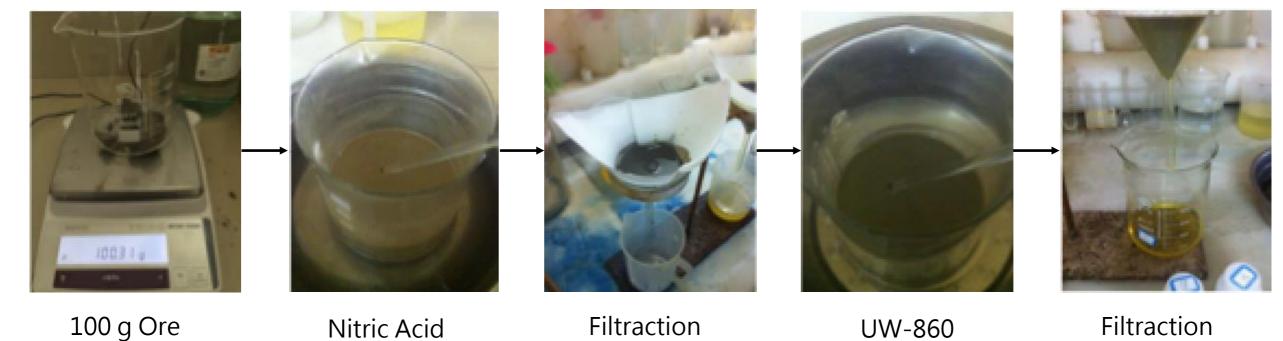
Falkland Islands

ICP analysis=> 140 g Au/Ton

XRF Test (Before treatment)

				Analyzed resul	t	
Sar	nple name	Y15224			Date	8/19/2015 4:57 PM
File	e name	PowderY1522	4		Counts	1
Ap	plication	Powder			Sample model	Bulk
No.	Component	Result	Unit	Statistical error	Detection limit Quantitati	ion limit
1	Sn		mass%	0.129	0.140	0.420
2	Ta		mass%	0.0482	0.0239	0.0717
3	Fe	9.49	mass%	0.0087	0.0151	0.0454
4	Nb	9.09	mass%	0.0332	0.0114	0.0341
5	Ti	4.36	mass%	0.0222	0.0141	0.0422
6	Mn	1.22	mass%	0.0085	0.0063	0.0189
7	Si	1.04	mass%	0.0352	0.0754	0.226
8	P	1.03	mass%	0.0139	0.0262	0.0786
9	Ce	0.784	mass%	0.0248	0.0377	0.113
10	Th	0.531	mass%	0.0043	0.0049	0.0148
11	Pb	0.522	mass%	0.0051	0.0060	0.0181
12	Cu	0.344	mass%	0.0172	0.0465	0.140
13	U	0.330	mass%	0.0031	0.0009	0.0028
14	Y	0.197	mass%	0.0016	0.0010	0.0029
15	Ge	0.194	mass%	0.0041	0.0099	0.0297
16	La	0.192	mass%	0.0134	0.0273	0.0819
17	Ni	0.181	mass%	0.0040	0.0072	0.0215
18	Nd	(0.180)	mass%	0.0296	0.0765	0.230
19	Co	0.150	mass%	0.0052	0.0191	0.0574
20	Ir	0.134	mass%	0.0144	0.0424	0.127
21	K	(0.128)	mass%	0.0302	0.0898	0.270
23	Au	0.110	mass%	0.0053	0.0142	0.0426
24	V	0.0702	mass%	0.0074	0.0211	0.0634
25	S	0.0658	mass%	0.0056	0.0155	0.0465
26	Hg	0.0384	mass%	0.0028	0.0064	0.0192
27	Cr	0.0323	mass%	0.0025	0.0064	0.0193
28	Pt	ND	mass%	0.0102	0.0304	0.0913

XRF Test (After treatment)


10	90	70	 11
	az	50	 14

				Analyzed resul	t	
Sampl	e name	Y15227_T-08	25-01		Date	8/25/2015 5:00 PM
File na	ame	PowderY1522	7_T-0825-01		Counts	1
Applic	cation	Powder			Sample model	Bulk
No. C	Component	Result	Unit	Statistical error	Detection limit Quantitat	ion limit
1 Sn	ı	46.3	mass%	0.122	0.125	0.375
2 Ta	ı	29.9	mass%	0.0501	0.104	0.313
3 Nt)	11.0	mass%	0.0404	0.0122	0.0367
4 Fe	:	4.32	mass%	0.0097	0.0144	0.0433
5 Ti		3.61	mass%	0.0204	0.0068	0.0203
6 Si		1.64	mass%	0.0326	0.0304	0.0913
7 M	n	1.13	mass%	0.0089	0.0102	0.0307
8 Cu	1	0.383	mass%	0.0150	0.0411	0.123
9 S		0.273	mass%	0.0049	0.0061	0.0184
10 U		0.230	mass%	0.0028	0.0036	0.0109
11 P		0.197	mass%	0.0063	0.0106	0.0318
12 Ge	•	0.170	mass%	0.0038	0.0093	0.0280
13 Ni		0.143	mass%	0.0031	0.0055	0.0166
14 Ga	ì	0.133	mass%	0.0076	0.0166	0.0499
15 Th	1	0.117	mass%	0.0022	0.0036	0.0109
16 Co)	0.111	mass%	0.0038	0.0110	0.0331
17 Y		0.103	mass%	0.0013	0.0022	0.0066
18 Pb	,	0.100	mass%	0.0030	0.0070	0.0211
19 K	_	ND	mass%	0.0329	0.0981	0.294
20 Aι	1	(0.0264)	mass%	0.0052	0.0151	0.0454

China Nanning(南寧) Ore

pretreatment

ICP

treatment

- Ore B 3.78 g Au/Ton
- Ore C 2.08 g Au/Ton

China Kansu(甘肅) Ore

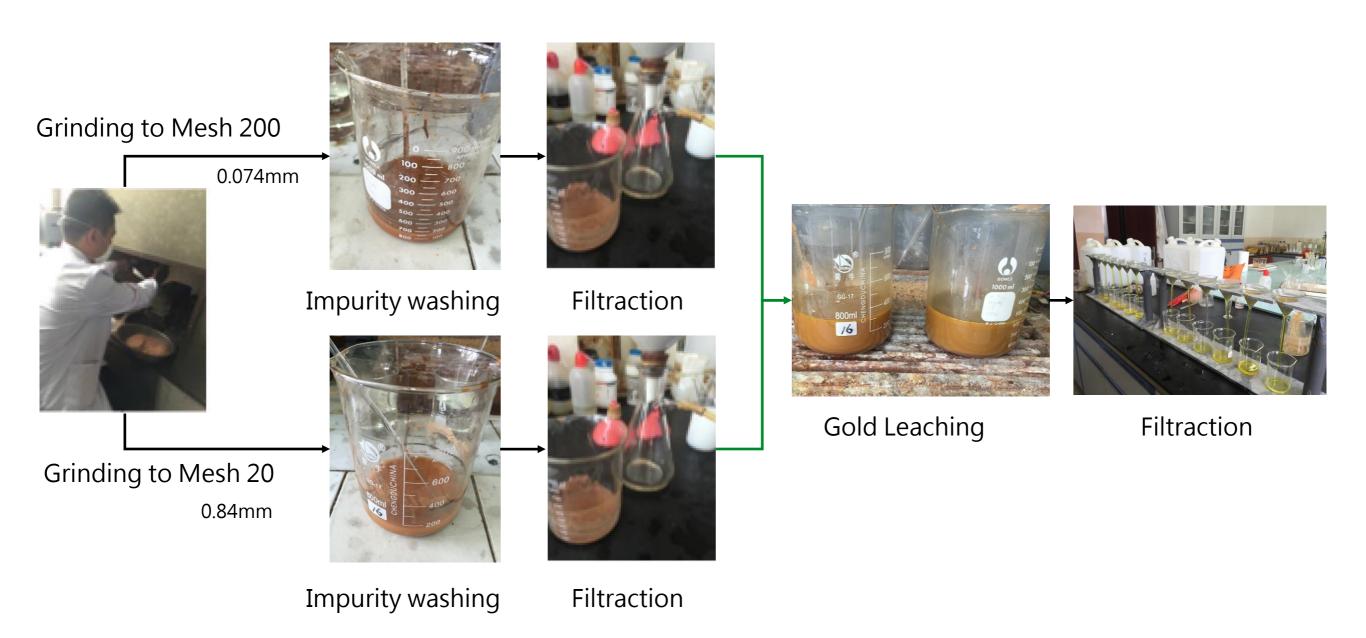

51.38 g Ore

Nitric Acid pretreatment

Filtraction

UW-860 treatment

ICP analysis=> 6.42 g Au/Ton



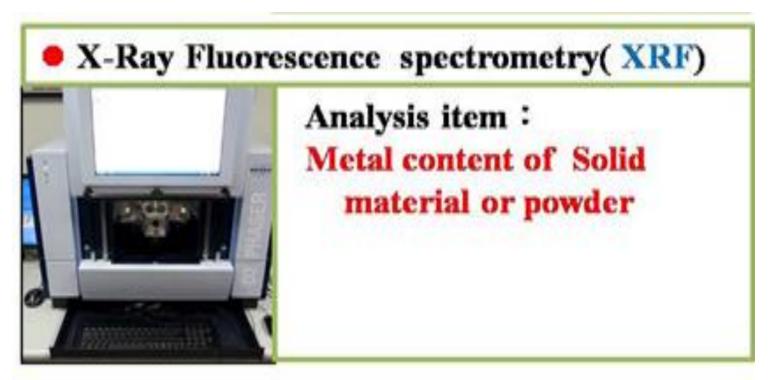
Gold Ore Test Report

西雙版納(Xishuangbanna)

Leaching Process

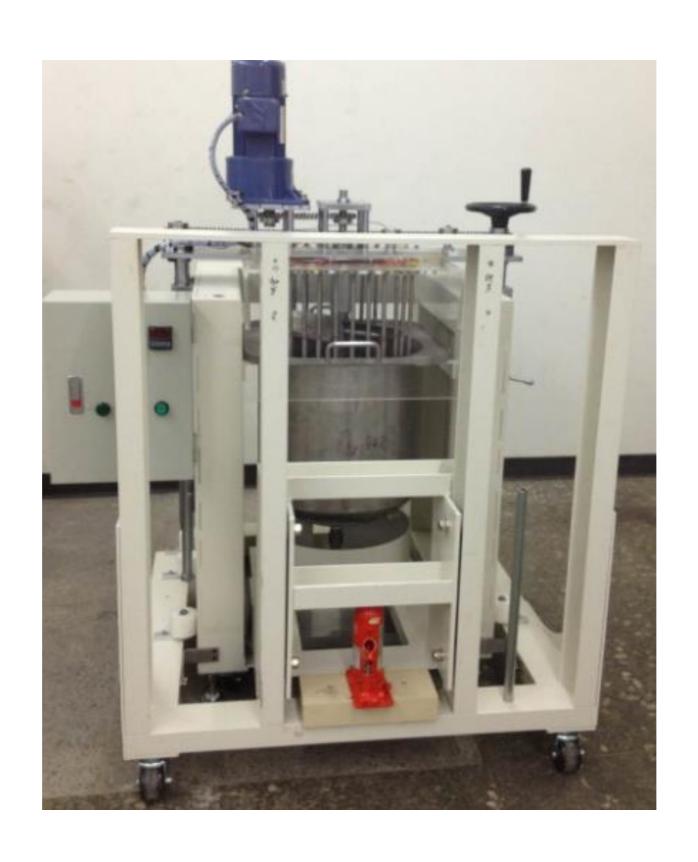
Result

- China AAS analysis
 20 mesh 0.523 g Au/Ton
 200 mesh 0.503 g Au/Ton
- Taiwan ICP analysis
 20 mesh 0.682 g Au/Ton
 200 mesh 0.744 g Au/Ton


Comparison Table

Item	Aqua Regia	Cyanide	Mercury	UW-860 Eco Gold stripper
Effectiveness	Substrate fully dissolved	Recovery Gold	Only recovery gold	Recovery Au, Pd, Pt, Ir
Saturation	<0.5 g/L	0.6~2 g/L	<0.5 g/L	2~7 g/L
Extract rate	Medium (12~36 hr)	Slow (48~72 hr)	Very slow (48~96 hr)	Fast (4~8 hr)
Ingredients	HNO3 + HC1 (1:3 v/v)	NaCN + Lead acetate	Mercury	HNO3 + UW-860 (1:1 v/v)
Corrosiveness	High	Medium	Medium	Medium
Safety	Highly acidic with chloride toxic	Highly toxic	Mercury vapor highly toxic	Acidic
Waste treatment	Requires huge amounts of alkaline to neutralize	Require to treat cyanide and Lead	Require to treat mercury residues	Use alkaline to neutralize

Analysis instrument


Analysis Test Item

- Liquid sample- ICP
- Solid sample XRF

Stirring One

Mine neutralize method

Calibrate the pH meter

10g of mine in 50ml of H2O

Added 1ml of 1% NaOH solution

1% w/w PH **NaOH** 3.7 1_ml

Before treatment, pH 2.9

Neutralize to pH 5-10

	0 ,,
2ml	5.1
3ml	6.3
4ml	7.2
5ml	8.3
6ml	9.5
7ml	10.4
8ml	11.4